If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-18x-81=0
a = 5; b = -18; c = -81;
Δ = b2-4ac
Δ = -182-4·5·(-81)
Δ = 1944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1944}=\sqrt{324*6}=\sqrt{324}*\sqrt{6}=18\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18\sqrt{6}}{2*5}=\frac{18-18\sqrt{6}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18\sqrt{6}}{2*5}=\frac{18+18\sqrt{6}}{10} $
| 2(3x-1)=5-x+3 | | 3e+2(e+1)=5(3e-7) | | 5x+21/4=x/2 | | 4z+12=3z+6 | | 9(x+3)+4=-14 | | 6n3+8n2=0 | | 2(3+x)=2 | | 2x-9+3x=-29 | | 25=k(20) | | -2x^2-3x=2x^2+17 | | -6y+1=-11 | | 5(x+7)=5x−7 | | 0.08(x−100)=71.5−0.07x | | 2(1.035x+1)=8 | | 4x-11+x=180 | | 50(4x+50)=170 | | 3x+136-(x+120)=88 | | 5c+4=3c-9 | | 9/10x-21=9/10(x-28) | | (5c+4)=(3c+9) | | x+3=-9/4(x+9) | | 0x+2=7-6x | | x+120-(3x+136)=88 | | 1/10x+5=9 | | 8x-46=18 | | x+30+2x+36=171 | | -3+6y+7+10=-8 | | 5.2+1.1n=2.01 | | 1x+7=11-4x | | -1/7(x-5)+4=-x-5 | | 2/x=8/10 | | -3x+106+9x+20=180 |